Kidneys, pancreas and gut as sources of GAA
- Post by: Admin
- November 5, 2019
- No Comment
Arginine:glycine amidinotransferase, necessary for the conversion of arginine (Arg) to guanidinoacetic acid (GAA), is expressed mainly in kidney and pancreas. The methylation of GAA to creatine (Cre) primarily occurs in the liver. The role of the gut in Cre homeostasis has not been characterized. We aimed to quantify the contribution of kidney, pancreas, and gut as sources of GAA for Cre synthesis. Sow-reared, feed-deprived Yucatan miniature piglets (17-21 d old) were randomly assigned to acute intravenous treatments (expressed in μmol/kg/min) of: 1) Arg (4.8) + methionine (1.4) (Arg/Met), 2) Cre (0.6) with Arg/Met (Cre/Arg/Met), 3) citrulline (4.8) + methionine (1.4) (Cit/Met), or 4) alanine (6.2) (Ala). Suckling piglets were also studied. Renal GAA release was higher during Cit/Met compared with all other treatments (53-360% higher; P < 0.01), suggesting that Cit is a better precursor than Arg for renal GAA synthesis. Kidneys contributed higher (P < 0.01) proportions of the total GAA with Cit/Met (89%) and Arg/Met (68%) treatments compared with pancreas and gut. In the suckling pigs, kidneys contributed 88% of the GAA, with the remainder released by pancreas. None of the treatments resulted in a net flux of Cre across the kidney or pancreas. In the gut, Arg/Met and Cre/Arg/Met, but not Cit/Met, resulted in a net release of Cre. Cre/Arg/Met resulted in a higher net GAA release from the gut (P < 0.0001) and pancreas (P < 0.001) (68% of total GAA produced) compared with all other treatments (<19% from both organs), perhaps because GAA not needed for creatine synthesis was subsequently released. Cit is a better precursor than Arg for renal GAA synthesis, and kidney is the major source of GAA for Cre synthesis in neonatal piglets, but the gut also has the capacity to synthesize GAA and Cre when Arg and Met are available.